[Total No. of Questions - 8] [Total No. of Printed Pages - 2] (2123)

1599

M. Tech 1st Semester Examination Information Theory and Random Signals EC-105

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt any five questions. All questions carry equal marks.

- (a) Define probability distribution function. Explain different properties of PDF. (10)
 - (b) Find the mean and variance of random variable 'x' defined by the PDF

$$f_x(x) = \frac{1}{b-a}$$
 $a \le x \le b$
= 0 elsewhere (10)

- (a) What do you mean by spectral density? Discuss the properties of power spectral density. (10)
 - (b) The probabilities of the five possible outcomes of an experiment are

$$P_1 = \frac{1}{2}, P_2 = \frac{1}{4}, P_3 = \frac{1}{8}, P_4 = P_5 = \frac{1}{16}$$

Find the entropy and information rate if there are 16 outcomes per second. (10)

[P.T.O.]

1599/200

			1000
3.	(a)	Calculate the capacity of AWGN channel with of 1 MHz and S/N ratio of 40 dB.	a band width (10)
	(b)	Explain Shannon Theorem in detail or memoryless channel.	coding for (10)
4.	A D	MS 'x' has five equally likely symbols	
	(a)	Construct a Shannon-Fano code for x, and efficiency of the code.	calculate the
	(b)	Construct another Shannon Fano code and compare the results.	
	(C)	Construct the huffman code.	(20)
5.	(a)	Write the encoder for convolutional codes.	(10)
	(b)	What are the properties of BCH codes? Discu computers for these codes.	ss syndrome (10)
6.	(a)	With the help of suitable example, explain the viterbial algorithm for decoding of convolutional code. (15)	
	(b)	What are the goals of cryptography? Discus-	s. (5)
7.	(a)	Discuss the maximum likelihood decoding for convolutional codes. (10)	
	(b)	Explain different error control strategies in consystem.	nmunication (10,
8.	Write short notes on :		
	(a)	Cyclic codes	
	(b)	Conditional probability	(10×2=20)